創傷治癒に関わる細胞挙動に対するソフトマテリアルによる メカノストレスの影響評価

大阪府立大学大学院理学系研究科

森 英樹

We evaluated the migration ability of fibroblasts and vascular endothelial cells by scratch assay. To evaluate the cell migration ability, cell images were acquired over time as the cells were cultured after cell detachment by scratch treatment. Since both cells filled the detached area by proliferation and migration within 48 hours, the migration rate and direction of each cell was determined by image analysis and calculation based on the temporal images of the cells during 48 hours of culture. Compared to fibroblasts, vascular endothelial cells tended to migrate more perpendicular to the boundary with the detached area. In addition, the migration rate of vascular endothelial cells was slower than that of fibroblasts. By analyzing the migration characteristics of individual cells, we were able to find differences in the migration characteristics of different cell types, which cannot be determined by the conventional method of measuring the total area covered by cells. To investigate the effect of covering with a soft hydrogel as a wound dressing on cell migration, a scratch assay was performed on vascular endothelial cells covered with gelatin-alginate gel after cell detachment. The gel-covered vascular endothelial cells lost their polarity in the direction of migration, and their migration rate became slower. Covering with a soft gelatin-alginate gel seemed to have the effect of delaying the migration of cells to re-cover the wound.

1. 緒 言

創傷治癒には、皮膚を構成する線維芽細胞やケラチノサ イトだけでなく、血管を構成する血管内皮細胞など多くの 細胞が関わる。外傷の治療に用いられる創傷被覆材には繊 維や軟らかいハイドロゲルなどが用いられるが、その材質 や硬さ(粘弾性)はそれらの細胞の移動や形態を含めた様々 な挙動に影響を与えると考えられる。近年、物理的刺激の 1つとして細胞の足場の硬さに対する細胞の応答メカニズ ムが明らかになってきているが、細胞種によってその応答 性は異なる¹⁻³⁾。複数種類の細胞からなる生体組織の再生 を促すために用いられる生体材料の選定には、それぞれの 細胞の材料の硬さに対する応答性も考慮する必要がある。 近年の情報科学技術の進歩に伴い、研究に利用できる性能 をもったカメラやコンピュータを比較的安価に入手できる ようになり、比較的情報量の大きい経時的な培養細胞の画 像データを簡便に保存、解析できるようになった。培養細 胞の経時的な画像は個々の細胞の移動や形態などに関する 非常に多くの情報を含んでいると考えられる。そこで本研 究では、インビトロ創傷治癒アッセイ法として利用されて いるスクラッチアッセイを用いて、線維芽細胞と血管内皮 細胞の運動能の違いを調べるとともに、創傷被覆材などに 利用されるアルギン酸カルシウムゲルで細胞を被覆した時

Evaluation of the effect of mechanostress by soft materials on cellular behaviors related to wound healing

Hideki Mori

Graduate School of Science, Osaka Prefecture University に細胞の移動能がどのように変化するかを調べることを目 的とした。

2. 方法

2.1. 細胞の培養

実験にはマウス線維芽細胞の株化細胞であるSNLとマウス血管内皮細胞の株化細胞であるb.End3とUV♀2を用いた。細胞は10% FBSおよび抗生物質を含むDMEM 培地を用い、ポリスチレン製培養皿上に播種し、炭酸ガスインキュベータ内で37℃、5% CO2条件下で培養した。

2.2. スクラッチアッセイ

細胞を3cm培養皿上で80%コンフルエントの状態になるまで培養し、滅菌済ピペットチップの先で接着した細胞の上を1回引掻くことで、幅約700µmの直線状の傷をつけるように細胞を剥がした(図1)。更に、その細胞を引き続き2日間培養する様子を、炭酸ガスインキュベータ内に

図1 細胞の剥離方法 (A) 細胞の剥離方向と (B) 剥離した細胞の画像 (scale bar=100 µm)

設置した細胞顕微観察装置CytoWatcher(アトー社製)を 用いて、20分間或いは30分間隔で経時的に撮影した。

2.3. 細胞の画像解析

経時的に得られた細胞画像をもとに、画像解析プログラム ImageJを用いて各画像における各細胞の座標を求めた。 連続的に細胞を撮影することができた計 110~130 個の細胞の座標データから各細胞の6時間毎の移動方向と移動距離 lを図示した。細胞の移動速度 $v = l \times (t_1 - t_0)^{-1}$ とした。

2.4. ゼラチン-アルギン酸カルシウム混合ゲルの作製

アルギン酸ナトリウムが1%、ゼラチンが8%になるように蒸留水に溶解し、ゼラチン-アルギン酸ナトリウム混合液を作製した。ゼラチン-アルギン酸ナトリウム混合液をアルミ製円筒形金型に入れ、18℃24時間、10℃2時間、4℃24時間の順に冷却し、直径15mm、高さ5mmの円筒形ゲルを作製した。更にこのゲルを0.5M塩化カルシウム溶液に24時間浸漬した後にオートクレーブ処理を施し、HEPES緩衝液に3日間浸漬したものを実験に用いた。スクラッチアッセイを実施する直前に、観察する細胞の上からゼラチン-アルギン酸カルシウム混合ゲル(ハイドロゲル)を被せた(図3)。

3. 結果

細胞の移動特性を知るためにスクラッチ処理によって細胞を剥離した部分は、いずれの細胞でも増殖と移動によっ て剥離後48時間程度で細胞が剥離部を埋めた。剥離部を 埋めるまでの48時間における細胞の移動特性を評価する ために、12時間毎の細胞の移動方向と移動速度の分布を 解析し、図4および図5に示した。線維芽細胞SNLは、 スクラッチ処理後12時間ではスクラッチ方向に対して垂 直な方向(0±22.5°)へ向かう細胞が全体の約8割を占めて いたが、12~24時間では全体の4割程度であり、48時間 以降では移動方向の極性がほとんど見られなくなった(図 4A)。SNLの細胞移動速度は、スクラッチ処理後24時間 までは約9割の細胞が130µm/hより低い移動速度で、様々 な速度の細胞が見られた。細胞移動速度の平均値はスクラ ッチ処理後12~24時間で74µm/hと最も高く、24時間 以降では徐々に低下した(図4B)。

一方、血管内皮細胞b.End3では、スクラッチ処理後24 時間までスクラッチ方向に対して垂直に進む細胞は全体の 7割以上を占め、24~36時間でも半数の細胞が垂直方向 へ移動しており、SNLに比べて移動方向に極性が見られ た(図5A)。移動速度に関しては大部分の細胞が80µm/h よりも低い速度で移動しており、SNLよりも低かった。ス クラッチ処理後12~24時間における移動速度の平均値が

図2 画像解析による細胞移動の距離と移動方向の表し方

スクラッチによる剥離部
図3 細胞へのハイドロゲルの被せ方

34µm/hで各培養期間の中で最も高かった(図5B)。

ヤング率 50kPa程度の弾性をもつハイドロゲルである ゼラチン-アルギン酸カルシウム混合ゲルを細胞に被せた 時の血管内皮細胞UV♀2の移動方向と移動速度に関して、 移動速度が最も高くなるスクラッチ処理後12時間におけ る値をもとに解析した。ゲルを被せていない対照条件では UV ♀ 2 の移動方向は垂直方向 (θ = 0 ± 22.5°) に明らかな 極性が見られたが、ゲルを被せて培養した条件では細胞の 移動方向は360°を24分割したすべての方向にわたってお り、移動方向に大きな偏りが見られなかった(図6)。細胞 の移動速度もゲルを被せて培養した条件の平均値は20um/ hで、対照条件の平均値 39µm/hに比べ低下した(図7)。 また、対照条件では細胞移動速度v=10-20µm/hが最頻値 であるのに対し、ゲルを被せて培養した条件では細胞移動 速度v=0-10µm/hが最頻値であった。軟らかいゼラチン-アルギン酸カルシウム混合ゲルを被せることによって、被 せられた血管内皮細胞の移動特性に変化が生じた。

В 0.5 0.4 0.3 頻度 0.2 36-48h 0.1 24-36h 12-24h 0 0,10 10-20-20-30-40 40:50 20:60 0-12h 60.70 10.80 00,100 80.90 10,20 120-130 100,10 7/130 細胞移動速度(µm/h)

図4 スクラッチアッセイにおける線維芽細胞の移動特性 線維芽細胞SNLの(A)移動方向と(B)移動速度のヒストグラム

А

図5 スクラッチアッセイにおける血管内皮細胞の移動特性 血管内細胞b.End3の(A)移動方向と(B)移動速度のヒストグラム

4. 考察

スクラッチアッセイはin vitroで簡便に細胞の移動を評 価できる創傷治癒アッセイ法として、皮膚の再生に関わる 細胞挙動の研究や塗布薬として効果が期待される低分子化 合物の評価など多くの研究に用いられている⁴⁻⁶⁾。しかし、 これらのスクラッチアッセイの評価方法の多くは、スクラ ッチあるいは専用の型によって細胞培養容器中に細胞剥離 部を作製し、その剥離部が細胞によって再び覆われる様子 を観察し、細胞の再被覆面積の経時変化を定量するもので ある⁷⁾。細胞剥離部の再被覆面積の計測は、創傷治癒に対 する薬効を簡便に判断できる利用しやすい指標であるが、 その細胞による再被覆のメカニズムを知るためには個々の 細胞の挙動を注意深く観察し、適切なパラメーターで評価 する必要がある。本研究では、細胞の移動方向と移動速度 の2つのパラメーターに絞って評価した。線維芽細胞由来 のSNLと血管内皮細胞由来のb.End3では移動方向と移動 速度のどちらの特性も異なっていた。細胞剥離部を細胞が 再被覆する面積および速度を議論する上で、細胞移動速度 だけでなく、細胞の移動方向の極性についても考慮する必 要がありそうである。最近、細胞集団運動の方向性が細胞 間におけるセリン/トレオニンキナーゼである ERK の活 性伝搬によって決まることが報告された⁸⁾。血管内皮細胞 由来のUV♀2はゼラチン-アルギン酸カルシウム混合ゲ ルを被せたことによって移動の方向性の極性が見られなく なったことはゲルの粘弾性がERK 活性伝搬に何らかの影 響を及ぼしているかもしれない。今後、これらの因果関係 について細胞種やパラメーターを増やし、更に研究を進め る必要がある。

5. 総 括

スクラッチアッセイによって得られた細胞の経時的な画 像をもとに、個々の細胞の2種類の移動特性(移動方向、 移動速度)を評価した。線維芽細胞と血管内皮細胞の間で 細胞種による移動特性の違いを見つけた。また、ゼラチン - アルギン酸カルシウム混合ゲルを血管内皮細胞の上に被 せて培養すると、細胞の移動方向に偏りが見られなくなり、 移動速度を低下させることを見つけた。本研究で用いた2 つの移動特性は創傷治癒に関する細胞挙動評価パラメータ ーとして、創傷被覆材を評価する指標になることが期待で きる。

(引用文献)

- S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le Digabel, M. Forcato, S. Bicciato, N. Elvassore, S. Piccolo, Role of YAP/TAZ in mechanotransduction, *Nature*, 474, 179–185 (2011).
- 2) H. Mori, A. Takahashi, A. Horimoto, M. Hara, Migration of glial cells differentiated from neurosphereforming neural stem/progenitor cells depended on the stiffness of the chemically cross-linked collagen gel substrate, *Neurosci. Lett.*, 555, 1-6 (2013).
- P. A. Janmey, D. A. Fletcher, C. A. Reinhart-King, Stiffness Sensing by Cells, *Physiol. Rev.*, 100, 695-724 (2020).
- 4) C. -C. Liang, A. Y. Park, J. -L. Guan, In vitro scratch assay: a convenient and inexpensive method for

analysis of cell migration in vitro, *Nature Protocols*, 2, 329–333 (2007).

- A. Grada, M. Otero-Vinas, F. Prieto-Castrillo, Z. Obagi, V. Falanga, Research techniques made simple: Analysis of collective cell migration using the wound healing assay, *J. Invest. Dermatol.*, 137, e11–e16 (2017).
- P. Sarkhail, L. Navidpour, M. Rahimifard, N. M. Hosseini, E. Souri, Bioassay-guided fractionation and identification of wound healing active compound from *Pistacia vera* L. hull extract, *J. Ethnopharmacol.* 248, 112335 (2020).
- F. Cappiello, B. Casciaro, M. L. Mangoni, A novel in vitro wound healing assay to evaluate cell migration, *J. Vis. Exp.*, 133, e56825 (2018).
- K. Aoki, Y. Kondo, H. Naoki, T. Hiratsuka, R.Í E. Itoh, M. Matsuda, Propagating wave of ERK activation orients collective cell migration, *Dev. Cell*, 43, 305–317 (2017).